skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clemens, Jan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Animals need to fine-control the speed and direction of locomotion to navigate complex and dynamic environments. To achieve this, they integrate multimodal sensory inputs with their internal drive to constantly adjust their motor output. This integration involves the interplay of neuronal populations across different hierarchical levels along the sensorimotor axis – from sensory, central, and modulatory neurons in the brain to descending neurons and motor networks in the nerve cord. Here, we characterize two populations of neurons that control distinct aspects of walking on different hierarchical levels inDrosophila. First, we usein-vivoelectrophysiological recordings to demonstrate that moonwalker descending neurons (MDN) integrate antennal touch to drive changes in walking direction from forward to backward. Second, we establish DopaMeander as an important component in the control of forward walking through a combination of optogenetic activation, silencing, connectomics, andin-vivorecordings. These dopaminergic modulatory neurons drive forward walking with increased turning, and the activity of individual neurons is correlated with ipsiversive turning. Hence, MDN and DopaMeander control opposite regimes of walking on different hierarchical levels. Computational models reveal that their activity predicts key parameters of spontaneous walking. Moreover, we find that both MDN and DopaMeander are gated out during flight. This suggests that neuronal populations across levels of control are modulated by the behavioral state to minimize cross-talk between motor programs. 
    more » « less
    Free, publicly-accessible full text available July 26, 2026
  2. Across the animal kingdom, social interactions rely on sound production and perception. From simple cricket chirps to more elaborate bird songs, animals go to great lengths to communicate information critical for reproduction and survival via acoustic signals. Insects produce a wide array of songs to attract a mate, and the intended receivers must differentiate these calls from competing sounds, analyze the quality of the sender from spectrotemporal signal properties, and then determine how to react. Insects use numerically simple nervous systems to analyze and respond to courtship songs, making them ideal model systems for uncovering the neural mechanisms underlying acoustic pattern recognition. We highlight here how the combination of behavioral studies and neural recordings in three groups of insects—crickets, grasshoppers, and fruit flies—reveals common strategies for extracting ethologically relevant information from acoustic patterns and how these findings might translate to other systems. 
    more » « less